5.3 The Fundamental Theorem of Calculus/27: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx</math><br>
<math>
<math>= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}</math><br>
\begin{align}
<math>= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right)</math><br>
 
<math>= 4+\frac{2^7}{7}</math><br>
\int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx
<math>= \frac{156}{7}</math>
= \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}</math><br>
= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right)</math><br>
= 4+\frac{2^7}{7}</math><br>
= \frac{156}{7}
 
\end{align}
</math>

Revision as of 21:03, 6 September 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx = \left(\frac{2x^2}{1+1}+\frac{x^6+1}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2}}
= \left((2)^2+\frac{(2)^7}{7}\right)-\left((0)^2+\frac{0^7}{7}\right)</math>
= 4+\frac{2^7}{7}</math>
= \frac{156}{7}

\end{align} </math>