5.3 The Fundamental Theorem of Calculus/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
&= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex] | &= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex] | ||
&= \left((2)^2-\frac{(2)^7}{7}\right) | &= \left((2)^2-\frac{(2)^7}{7}\right)-\left((0)^2+\frac{(0)^7}{7}\right) \\[2ex] | ||
&= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex] | &= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex] |
Revision as of 21:16, 6 September 2022