5.3 The Fundamental Theorem of Calculus/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/27" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(One intermediate revision by the same user not shown) | |||
Line 7: | Line 7: | ||
&= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex] | &= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex] | ||
&= \left((2)^2-\frac{(2)^7}{7}\right) | &= \left((2)^2-\frac{(2)^7}{7}\right)-\left((0)^2+\frac{(0)^7}{7}\right) \\[2ex] | ||
&= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex] | &= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex] |
Latest revision as of 21:17, 6 September 2022