5.3 The Fundamental Theorem of Calculus/33: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<math>\int_{1}^{2}\left(1+2y^2\right)dy
<math>
=\int_{1}^{2}\left(4y^2+4y+1\right)dy
 
=1y+\frac{4y^3}{3}+\frac{4y^2}{2}\bigg|_{1}^{2}
\begin{align}
=2+\frac{32}{3}+\frac{16}{2}-\left(1+\frac{4}{3}+\frac{4}{2}\right)
\int_{1}^{2}\left(1+2y\right)^2dy &=\int_{1}^{2}\left(1+4y+4y^2\right)dy \\[2ex]
=\frac{49}{3}</math>
 
&=y+\frac{4y^2}{2}+\frac{4y^3}{3}\bigg|_{1}^{2} \\[2ex]
 
&=\left[2+\frac{4(2)^2}{2}+\frac{4(2)^3}{2}\right]-\left[1+\frac{4(1)^2}{2}+\frac{4(1)^3}{2}\right] \\[2ex]
 
&=\frac{49}{3}
\end{align}
 
</math>

Latest revision as of 21:32, 6 September 2022