5.3 The Fundamental Theorem of Calculus/35: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/35" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(25 intermediate revisions by one other user not shown)
Line 2: Line 2:
\begin{align}
\begin{align}


\int_{1}^{9}\frac{1}{2x}dx = \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx
\int_{1}^{9}\frac{1}{2x}dx &= \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx \\[2ex]


&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} \\[2ex]
&= \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex]
&= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 \\[2ex]
&= \ln{3} \\[2ex]


\end {align}
\end {align}
</math>
</math>

Latest revision as of 21:34, 6 September 2022