5.3 The Fundamental Theorem of Calculus/35: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/35" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\int_{1}^{9}\frac{1}{2x}dx &= \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx | \int_{1}^{9}\frac{1}{2x}dx &= \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx \\[2ex] | ||
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex] | &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} \\[2ex] | ||
&= \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex] | |||
&= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \\[2ex] | &= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 \\[2ex] | ||
&= \ln{3} \\[2ex] | |||
\end {align} | \end {align} | ||
</math> | </math> |
Latest revision as of 21:34, 6 September 2022