5.3 The Fundamental Theorem of Calculus/37: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{6}{\sqrt{1-t^2}}\,dt &= 6\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{1}{\sqrt{1-t^2}}\,dt\\[2ex] | |||
&=6\arcsin{(x)}\bigg|_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \\[2ex] | |||
= | &=\left[6\arcsin\left(\frac{\sqrt{3}}{2}\right)\right]-\left[6\arcsin{\left(\frac{1}{2}\right)}\right] \\[2ex] | ||
=\pi | &=\left[6\cdot\frac{\pi}{3}\right]-\left[6\cdot\frac{\pi}{6}\right] = 2\pi-\pi \\[2ex] | ||
&=\pi | |||
\end{align} | |||
</math> | </math> |
Revision as of 21:58, 6 September 2022