5.3 The Fundamental Theorem of Calculus/37: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


g(x)=\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{6}{\sqrt{1-t^2}} dt \\[2ex]
\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{6}{\sqrt{1-t^2}}\,dt &= 6\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{1}{\sqrt{1-t^2}}\,dt\\[2ex]


g^\prime(x)=\frac{d}{dx}\left(\int\limits_{1/2}^{\sqrt{3}/2}\frac{6}{\sqrt{1-t^2}} dt\right)=6sin^{-1}(x)\bigg|_{1/2}^{\sqrt{3}/2}
&=6\arcsin{(x)}\bigg|_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \\[2ex]


=6sin^{-1}(\sqrt{3})/2)-(6sin^{-1}(1/2))
&=\left[6\arcsin\left(\frac{\sqrt{3}}{2}\right)\right]-\left[6\arcsin{\left(\frac{1}{2}\right)}\right] \\[2ex]


=\pi
&=\left[6\cdot\frac{\pi}{3}\right]-\left[6\cdot\frac{\pi}{6}\right] = 2\pi-\pi \\[2ex]


&=\pi
\end{align}
</math>
</math>

Revision as of 21:58, 6 September 2022