5.3 The Fundamental Theorem of Calculus/37: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/37" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
\begin{align}


g(x)=\int_{1/2}^{\sqrt{3}/2}\frac{6}{\sqrt{1-t^2}} dt
\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{6}{\sqrt{1-t^2}}\,dt &= 6\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{1}{\sqrt{1-t^2}}\,dt\\[2ex]


g^\prime(x)=\frac{d}{dx}\left(\int\limits_{1/2}^{\sqrt{3}/2}\frac{6}{\sqrt{1-t^2}} dt\right)=6sin^{-1}(x)\bigg|_{1/2}^{\sqrt{3}/2}
&=6\arcsin{(x)}\bigg|_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \\[2ex]


=6sin^{-1}(\sqrt{3})/2)-(6sin^{-1}(1/2))
&=\left[6\arcsin\left(\frac{\sqrt{3}}{2}\right)\right]-\left[6\arcsin{\left(\frac{1}{2}\right)}\right] \\[2ex]


=\pi
&=\left[6\cdot\frac{\pi}{3}\right]-\left[6\cdot\frac{\pi}{6}\right] = 2\pi-\pi \\[2ex]


&=\pi
\end{align}
</math>
</math>

Latest revision as of 21:59, 6 September 2022