5.3 The Fundamental Theorem of Calculus/41: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(67 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>
<math>
 
\int_{0}^{\pi}f(x)\,dx
\int\limits_{0}^{\pi}f(x)dx
\quad \text{where} \;
\quad \text{where} \;


f(x) =
f(x) =
   \begin{cases}
   \begin{cases}
     sin(x) & 0 \le x < \frac{\pi}{2} \\
     \sin(x) & 0 \le x < \frac{\pi}{2} \\
     cos(x) & \frac{\pi}{2} \le x \le \pi
     \cos(x) & \frac{\pi}{2} \le x \le \pi
   \end{cases}
   \end{cases}
</math>


<math>
\begin{align}


\int\limits_{0}^{\frac{pi}{2}}f(x)dx
\int_{0}^{\pi}f(x)\,dx &= \int_{0}^{\frac{\pi}{2}}f(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}f(x)\,dx = \int_{0}^{\frac{\pi}{2}}\sin(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}\cos(x)\,dx \\[2ex]
&= -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} \\[2ex]
&= \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] + \left[\sin(\pi)-\sin\left(\frac{\pi}{2}\right)\right] \\[2ex]
&= [0+1]+[0-1] \\[2ex]
&= 0


\end{align}
</math>
</math>

Latest revision as of 22:07, 6 September 2022