5.3 The Fundamental Theorem of Calculus/41: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 14: Line 14:
\begin{align}
\begin{align}


\int_{0}^{\pi}f(x)\,dx = \int_{0}^{\frac{\pi}{2}}f(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}f(x)\,dx &= \int_{0}^{\frac{\pi}{2}}\sin(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}\cos(x)\,dx \\[2ex]
\int_{0}^{\pi}f(x)\,dx &= \int_{0}^{\frac{\pi}{2}}f(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}f(x)\,dx = \int_{0}^{\frac{\pi}{2}}\sin(x)\,dx + \int_{\frac{\pi}{2}}^{\pi}\cos(x)\,dx \\[2ex]
&= -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} = \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] + \left[\sin(\pi)-\sin\left(\frac{\pi}{2}\right)\right] \\[2ex]
&= -\cos(x)\bigg|_{0}^{\frac{\pi}{2}} + \sin(x)\bigg|_{\frac{\pi}{2}}^{\pi} \\[2ex]
&= 0+1+0-1 = 0
&= \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] + \left[\sin(\pi)-\sin\left(\frac{\pi}{2}\right)\right] \\[2ex]
&= [0+1]+[0-1] \\[2ex]
&= 0


\end{align}
\end{align}
</math>
</math>

Latest revision as of 22:07, 6 September 2022