5.3 The Fundamental Theorem of Calculus/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<math>\frac{d}{dx}g(x) = \frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right]=3\cdot\frac{(3x)^2-1}{(3x)^2+1}-2\cdot\frac{(2x)^2-1}{(2x)^2+1}</math> | <math>\frac{d}{dx}[g(x)] = \frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right]=3\cdot\frac{(3x)^2-1}{(3x)^2+1}-2\cdot\frac{(2x)^2-1}{(2x)^2+1}</math> | ||
Revision as of 22:22, 6 September 2022