5.3 The Fundamental Theorem of Calculus/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
<math>\ | <math> | ||
\begin{align} | |||
\frac{d}{dx}[g(x)] = \frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right]=3\cdot\frac{(3x)^2-1}{(3x)^2+1}-2\cdot\frac{(2x)^2-1}{(2x)^2+1} \\[2ex] | |||
=3\cdot\frac{9x^2-1}{9x^2+1}-2\cdot\frac{4x^2-1}{4x^2+1} \\[2ex] | |||
=\frac{3(9x^2-1)}{9x^2+1}-\frac{2(4x^2-1)}{4x^2+1} \\[2ex] | |||
\end{align} | |||
</math> |
Revision as of 22:23, 6 September 2022