5.3 The Fundamental Theorem of Calculus/53: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.3 The Fundamental Theorem of Calculus/53" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(8 intermediate revisions by the same user not shown)
Line 2: Line 2:




<math>\frac{d}{dx}g(x) = \frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right]=(3\cdot\frac{(3x)^2-1}{(3x)^2+1})-(2\cdot\frac{(2x)^2-1}{(2x)^2+1})</math>
<math>
\begin{align}


\frac{d}{dx}[g(x)] &= \frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right] \\[2ex]


<math>=(3*\frac{9x^2-1}{9x^2+1})-(2*\frac{4x^2-1}{4x^2+1})</math>=
&=3\cdot\frac{(3x)^2-1}{(3x)^2+1}-2\cdot\frac{(2x)^2-1}{(2x)^2+1} =3\cdot\frac{9x^2-1}{9x^2+1}-2\cdot\frac{4x^2-1}{4x^2+1} \\[2ex]


&=\frac{3(9x^2-1)}{9x^2+1}-\frac{2(4x^2-1)}{4x^2+1} \\[2ex]


<math>=(\frac{3(9x^2-1)}{9x^2+1})-(\frac{2(4x^2-1)}{4x^2+1})</math>
\end{align}
</math>

Latest revision as of 22:24, 6 September 2022