5.5 The Substitution Rule/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
\int \frac{1}{\sqrt{1-x^{2}}} = \int \frac{1}{u} du = \ln |u| +c = \ln |\arcsin {x}| + c | \int \frac{1}{\sqrt{1-x^{2}}} = \int \frac{1}{u} du = \ln |u| +c = \ln |\arcsin {x}| + c | ||
</math> | |||
<math> | |||
\begin{align} | |||
u &= \sqrt{u} | |||
\\[2ex] | |||
du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex] | |||
2du &= \frac{1}{\sqrt{t}} dx | |||
\end{align} | |||
</math> | </math> |
Revision as of 09:06, 7 September 2022