5.5 The Substitution Rule/65: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
<math> | |||
\begin{align} | |||
\int_{1}^{2} x \sqrt{x-1} dx = \int_{0}^{1} u+1 \sqrt{u}du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du = \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1} =\frac{2}{5} + \frac{2}{3} = \frac{16}{15} |
Revision as of 15:52, 7 September 2022
<math>
\begin{align}
\int_{1}^{2} x \sqrt{x-1} dx = \int_{0}^{1} u+1 \sqrt{u}du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du = \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1} =\frac{2}{5} + \frac{2}{3} = \frac{16}{15}