6.2 Trigonometric Functions: Unit Circle Approach/79: Difference between revisions
Jump to navigation
Jump to search
(Created page with " <math> \theta \rightarrow x=-3, \, y=4, \, r=5 </math><br><br> <math> -3^2 + 4^2 = 5^2 </math><br><br> <math> 9 + 16 = 25 </math><br><br> <math>\sqrt{25} = 5 = r </math><br><br> <math> \begin{align} \sin{(\theta)} &= \frac{4}{5} & \csc{(\theta)} &= \frac{5}{4}\\[2ex] \cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex] \tan{(\theta)} &= \frac{4}{-3} & \cot{(\theta)} &= \frac{-3}{4} \\[2ex] \end{align} </math>") |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> \theta \rightarrow x= | <math> \theta \rightarrow x=2, \, y=-3, \, r= \sqrt{13} </math><br><br> | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\sin{(\theta)} &= \frac{ | \sin{(\theta)} &= -\frac{3\sqrt{13}}{13} & \csc{(\theta)} &= -\frac{\sqrt{13}}{3}\\[2ex] | ||
\cos{(\theta)} &= \frac{ | \cos{(\theta)} &= \frac{2\sqrt{13}}{13} & \sec{(\theta)} &= \frac{\sqrt{13}}{2}\\[2ex] | ||
\tan{(\theta)} &= \frac{ | \tan{(\theta)} &= \frac{-3}{2} & \cot{(\theta)} &= \frac{-2}{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 16:12, 7 September 2022