6.2 Trigonometric Functions: Unit Circle Approach/79: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with " <math> \theta \rightarrow x=-3, \, y=4, \, r=5 </math><br><br> <math> -3^2 + 4^2 = 5^2 </math><br><br> <math> 9 + 16 = 25 </math><br><br> <math>\sqrt{25} = 5 = r </math><br><br> <math> \begin{align} \sin{(\theta)} &= \frac{4}{5} & \csc{(\theta)} &= \frac{5}{4}\\[2ex] \cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex] \tan{(\theta)} &= \frac{4}{-3} & \cot{(\theta)} &= \frac{-3}{4} \\[2ex] \end{align} </math>")
 
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:




<math> \theta \rightarrow x=-3, \, y=4, \, r=5 </math><br><br>
<math> \theta \rightarrow x=2, \, y=-3, \, r= \sqrt{13} </math><br><br>
 
 


<math> -3^2 + 4^2 = 5^2 </math><br><br>
<math> 9 + 16 = 25 </math><br><br>
<math>\sqrt{25} = 5 = r </math><br><br>
<math>
<math>
\begin{align}
\begin{align}


\sin{(\theta)} &= \frac{4}{5} & \csc{(\theta)} &= \frac{5}{4}\\[2ex]
\sin{(\theta)} &= -\frac{3\sqrt{13}}{13} & \csc{(\theta)} &= -\frac{\sqrt{13}}{3}\\[2ex]


\cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex]  
\cos{(\theta)} &= \frac{2\sqrt{13}}{13} & \sec{(\theta)} &= \frac{\sqrt{13}}{2}\\[2ex]  


\tan{(\theta)} &= \frac{4}{-3} & \cot{(\theta)} &= \frac{-3}{4} \\[2ex]
\tan{(\theta)} &= \frac{-3}{2} & \cot{(\theta)} &= \frac{-2}{3} \\[2ex]




\end{align}
\end{align}
</math>
</math>

Latest revision as of 16:12, 7 September 2022