5.5 The Substitution Rule/45: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 20: Line 20:
&=\int_{}^{} \left(\frac{u}{\sqrt[4](u)} - \frac{2}{\sqrt[4](u)}\right) \\[2ex]
&=\int_{}^{} \left(\frac{u}{\sqrt[4](u)} - \frac{2}{\sqrt[4](u)}\right) \\[2ex]
&=\int_{}^{} \left(u^{\frac{3}{4}} - 2u^{-\frac{1}{u}} \right) \\[2ex]
&=\int_{}^{} \left(u^{\frac{3}{4}} - 2u^{-\frac{1}{u}} \right) \\[2ex]
&= \frac{4}{7} u^{\frac{7}{4}} - 2(\frac{4}{3})u^{\frac{3}{4} \\[2ex]
&= \frac{4}{7} u^{\frac{7}{4}} - 2(\frac{4}{3})u^{\frac{3}{4} + c \\[2ex]
 
 


\end{align}
\end{align}


</math>
</math>

Revision as of 16:18, 7 September 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{}^{} \left(\frac {x}{\sqrt[4]{x+2}}\right)dx &=\int_{}^{} \left(\frac{u-2}{\sqrt[4]{u}}\right) \\[2ex] &=\int_{}^{} \left(\frac{u}{\sqrt[4](u)} - \frac{2}{\sqrt[4](u)}\right) \\[2ex] &=\int_{}^{} \left(u^{\frac{3}{4}} - 2u^{-\frac{1}{u}} \right) \\[2ex] &= \frac{4}{7} u^{\frac{7}{4}} - 2(\frac{4}{3})u^{\frac{3}{4} + c \\[2ex] \end{align} }