5.5 The Substitution Rule/45: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
&=\int_{}^{} \left(\frac{u}{\sqrt[4](u)} - \frac{2}{\sqrt[4](u)}\right) \\[2ex] | &=\int_{}^{} \left(\frac{u}{\sqrt[4](u)} - \frac{2}{\sqrt[4](u)}\right) \\[2ex] | ||
&=\int_{}^{} \left(u^{\frac{3}{4}} - 2u^{-\frac{1}{u}} \right) \\[2ex] | &=\int_{}^{} \left(u^{\frac{3}{4}} - 2u^{-\frac{1}{u}} \right) \\[2ex] | ||
&= \frac{4}{7} u^{\frac{7}{4}} - 2(\frac{4}{3})u^{\frac{3}{4} | &= \frac{4}{7} u^{\frac{7}{4}} - 2(\frac{4}{3})u^{\frac{3}{4} + c \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 16:18, 7 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int_{}^{} \left(\frac {x}{\sqrt[4]{x+2}}\right)dx &=\int_{}^{} \left(\frac{u-2}{\sqrt[4]{u}}\right) \\[2ex] &=\int_{}^{} \left(\frac{u}{\sqrt[4](u)} - \frac{2}{\sqrt[4](u)}\right) \\[2ex] &=\int_{}^{} \left(u^{\frac{3}{4}} - 2u^{-\frac{1}{u}} \right) \\[2ex] &= \frac{4}{7} u^{\frac{7}{4}} - 2(\frac{4}{3})u^{\frac{3}{4} + c \\[2ex] \end{align} }