5.5 The Substitution Rule/27: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(38 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>
\int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz
</math>
<math>
<math>
\begin{align}
\begin{align}


& \int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz \\[2ex]
u &=1+{z}^3 \\[2ex]
du &=3{z}^2dz \\[2ex]
\frac{1}{3}du &={z}^2dz \\[2ex]


& \int{tdt} \\[2ex]
\end{align}
 
</math>
& \cfrac{t^2}{2} \\[2ex]
 
& Substitute\\t=\sqrt[3]{1+z^3} \\[2ex]
 
&= \cfrac\sqrt[3]{(1+z^3)^2}{2} + C


<math>
\begin{align}


\int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz  &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int{u}^{-\frac{1}{3}}du \\[2ex]


&= -\frac{1}{3}(\frac{3}{2}{u}^\frac{2}{3}) = \frac{3}{6}{u}^{2/3} \\[2ex]
&= \frac{1}{2}({1+z^{3}})^\frac{2}{3} + C




\end{align}
\end{align}
</math>
</math>

Latest revision as of 16:38, 7 September 2022