5.5 The Substitution Rule/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 16: | Line 16: | ||
\begin{align} | \begin{align} | ||
\int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int{u}^-\frac{1}{3}du \\[2ex] | \int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int{u}^{-\frac{1}{3}}du \\[2ex] | ||
&= -\frac{1}{3}(\frac{3}{2}{u}^\frac{2}{3}) = \frac{3}{6}{u}^2/3 | &= -\frac{1}{3}(\frac{3}{2}{u}^\frac{2}{3}) = \frac{3}{6}{u}^{2/3} \\[2ex] | ||
&= \frac{1}{2}({1+z^{3}})^\frac{2}{3} + C | |||
&= \frac{1}{2}{1+z^3}^\frac{2}{3} + C | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 16:38, 7 September 2022