5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions
Jump to navigation
Jump to search
Andy Arevalo (talk | contribs) No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
& \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C \\[2ex] | & \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C \\[2ex] | ||
& \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} + | & \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} \\[2ex] | ||
& ={\cos{x} - \frac{1}{3}\cdot 3\sin{x^2} \cos{x} +0} \\[2ex] | & ={\cos{x} - \frac{1}{3}\cdot 3\sin{x^2} \cos{x} +0} \\[2ex] |
Revision as of 17:37, 7 September 2022