5.5 The Substitution Rule/7: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
\int x\sin{(x^{2})}dx &=\frac{1}{2}\int\sin{(u)}du \\[2ex] | \int x\sin{(x^{2})}dx &=\frac{1}{2}\int\sin{(u)}du \\[2ex] | ||
&= -\frac{1}{2}cos{(u)}+C \\[2ex] | &= -\frac{1}{2}\cos{(u)}+C \\[2ex] | ||
&= -\frac{1}{2}cos{(x^{2})}+C | &= -\frac{1}{2}\cos{(x^{2})}+C | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 20:02, 7 September 2022