5.3 The Fundamental Theorem of Calculus/23: Difference between revisions
Jump to navigation
Jump to search
m (Protected "5.3 The Fundamental Theorem of Calculus/23" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
No edit summary |
||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \ | \int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \Bigg|_{0}^{1} =\frac{x^{\frac{9}{5}}}{\frac{9}{5}} \bigg|_{0}^{1} \\[2ex] | ||
&=\frac{5\sqrt[5]{(1)^9}}{9}-\frac{5 \sqrt[5]{(0)^9}}{9} \\[2ex] | &=\frac{5\sqrt[5]{(1)^9}}{9}-\frac{5 \sqrt[5]{(0)^9}}{9} \\[2ex] |
Revision as of 22:00, 7 September 2022