5.3 The Fundamental Theorem of Calculus/23: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


\int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \Bigg|_{0}^{1} =\frac{x^{\frac{9}{5}}}{\frac{9}{5}} \bigg|_{0}^{1} \\[2ex]
\int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \Bigg|_{0}^{1} =\frac{x^{\frac{9}{5}}}{\frac{9}{5}} \Bigg|_{0}^{1} \\[2ex]


&=\frac{5\sqrt[5]{(1)^9}}{9}-\frac{5 \sqrt[5]{(0)^9}}{9} \\[2ex]
&=\frac{5\sqrt[5]{(1)^9}}{9}-\frac{5 \sqrt[5]{(0)^9}}{9} \\[2ex]

Revision as of 22:00, 7 September 2022