5.3 The Fundamental Theorem of Calculus/23: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(22 intermediate revisions by 2 users not shown)
Line 2: Line 2:
\begin{align}
\begin{align}


\int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \Bigg|_{0}^{1} =\frac{x^{\frac{9}{5}}}{\frac{9}{5}} \Bigg|_{0}^{1} \\[2ex]


&\int_{0}^{1}x^\cfrac{4}{5}dx \\[2ex]
&=\left[\frac{5\sqrt[5]{(1)^9}}{9}\right]-\left[\frac{5 \sqrt[5]{(0)^9}}{9}\right] \\[2ex]
 
&= \cfrac{5\sqrt[5]{x^4}}*{9} \\[2ex]
 
&= \cfrac{5\sqrt[5]{x^4}}*{9}\bigg|_{0}^{1}


&=\frac{5}{9}


\end{align}
\end{align}
</math>
</math>

Latest revision as of 22:01, 7 September 2022