5.3 The Fundamental Theorem of Calculus/23: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \ | \int_{0}^{1}x^{\frac{4}{5}}dx &=\frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} \Bigg|_{0}^{1} =\frac{x^{\frac{9}{5}}}{\frac{9}{5}} \Bigg|_{0}^{1} \\[2ex] | ||
&=\frac{5\sqrt[5]{1^9}}{9}-\frac{5 \sqrt[5]{0^9}}{9} \\[2ex] | &=\left[\frac{5\sqrt[5]{(1)^9}}{9}\right]-\left[\frac{5 \sqrt[5]{(0)^9}}{9}\right] \\[2ex] | ||
&=\ | &=\frac{5}{9} | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 22:01, 7 September 2022