5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


\int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C &= \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} \\[2ex]
\int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C \\[2ex]
 
\frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} \\[2ex]


& ={\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex]
& ={\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex]

Revision as of 17:14, 13 September 2022


Note: