5.5 The Substitution Rule/65: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \int_{1}^{2} x \sqrt{x-1} dx = \int_{0}^{1} u+1 \sqrt{u}du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{2}{3} + \sqrt{u}du = \frac{2}{5} + \frac{2}{3} = \frac{16}{15} </math>") |
No edit summary |
||
(54 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int_{1}^{2} x \sqrt{x-1} dx = \int_{ | \int_{1}^{2} x \sqrt{x-1} dx | ||
</math> | |||
<math> | |||
\begin{align} | |||
u &= x-1 \\ u+1 &= x \\[2ex] | |||
du &= 1 dx \\[2ex] | |||
du &= dx | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int_{1}^{2} (x \sqrt{x-1}\,)\;dx &= \int_{0}^{1} ((u+1) \sqrt{u})\;du = \int_{0}^{1} (u^ \frac{3}{2} + u^ \frac{1}{2})\;du \\[2ex] | |||
&= (\frac{2}{5} u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2})\bigg| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] | |||
&= \frac{16}{15}\\[2ex] | |||
\end{align} | |||
</math> | </math> |
Latest revision as of 23:11, 13 September 2022