5.5 The Substitution Rule/65: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(40 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>


\int_{1}^{2} x \sqrt{x-1} dx = \int_{0}^{1} u+1 \sqrt{u}du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du = \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1}  =\frac{2}{5} + \frac{2}{3} = \frac{16}{15}
\int_{1}^{2} x \sqrt{x-1} dx  


</math>
</math>
Line 9: Line 9:
\begin{align}
\begin{align}


u &= x-1   \\ u+1 &= x
u &= x-1 \\ u+1 &= x \\[2ex]
  \\[2ex]
du &= 1 dx \\[2ex]
du &= 2 dx \\[2ex]
du &= dx
\frac{1}{2} du &= dx
\end{align}
</math>
 
 
<math>
\begin{align}
\int_{1}^{2} (x \sqrt{x-1}\,)\;dx &= \int_{0}^{1} ((u+1) \sqrt{u})\;du = \int_{0}^{1} (u^ \frac{3}{2} + u^ \frac{1}{2})\;du \\[2ex]
&= (\frac{2}{5} u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2})\bigg| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex]
&= \frac{16}{15}\\[2ex]
\end{align}
\end{align}
</math>
</math>

Latest revision as of 23:11, 13 September 2022