5.5 The Substitution Rule/21: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
\begin{align} | \begin{align} | ||
\int \frac{ | \int \frac{1}}{\sqrt{t}}\cos{(\sqrt{t}) dt &= 2\int \cos {u}\;du \\[2ex] | ||
&= 2 \sin{u}+c \\[2ex] | &= 2 \sin{u}+c \\[2ex] | ||
&= 2 \sin(\sqrt{t}) + c \\[2ex] | &= 2 \sin(\sqrt{t}) + c \\[2ex] |
Revision as of 23:24, 13 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int \frac{1}}{\sqrt{t}}\cos{(\sqrt{t}) dt &= 2\int \cos {u}\;du \\[2ex] &= 2 \sin{u}+c \\[2ex] &= 2 \sin(\sqrt{t}) + c \\[2ex] \end{align} }