5.5 The Substitution Rule/21: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(58 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}}dt  
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}}\;dt  
 
\int\sqrt{u}du \\[2ex]
</math>
</math>


Line 9: Line 7:
\begin{align}
\begin{align}


& \int\frac{\left(\ln(x)\right)^2}{x}dx \ = \ \int u^2du \\[2ex]
u &= \sqrt{t} \\[2ex]
& = \ \frac{u^{2+1}}{2+1}du \ = \ \frac{1}{3}u^3+C \\[2ex]
du &= (\frac{1}{2}\ \frac{1}{\sqrt{t}})\;dt \\[2ex]
2du &= \frac{1}{\sqrt{t}}\;dt
\end{align}
</math>


& u=\ln(x) \\
& du=\frac{1}{x}dx \\


<math>
\begin{align}


& = \ \frac{1}{3}(\ln(x))^3+C
\int \frac{1}{\sqrt{t}}\cos{(\sqrt{t})} dt &= 2\int \cos {u}\;du \\[2ex]
 
&= 2 \sin{u}+c \\[2ex]
&= 2 \sin(\sqrt{t}) + c \\[2ex]




\end{align}
\end{align}
</math>
</math>

Latest revision as of 23:27, 13 September 2022