5.5 The Substitution Rule/21: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt  
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}}\;dt  
</math>
</math>


Line 8: Line 8:


u &= \sqrt{t} \\[2ex]
u &= \sqrt{t} \\[2ex]
du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex]
du &= (\frac{1}{2}\ \frac{1}{\sqrt{t}})\;dt \\[2ex]
2du &= \frac{1}{\sqrt{t}} dx
2du &= \frac{1}{\sqrt{t}}\;dt
\end{align}
\end{align}
</math>
</math>
Line 17: Line 17:
\begin{align}
\begin{align}


\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt &= 2\int \cos {u} du \\[2ex]
\int \frac{1}{\sqrt{t}}\cos{(\sqrt{t})} dt &= 2\int \cos {u}\;du \\[2ex]
&= 2 \sin{u}+c \\[2ex]
&= 2 \sin{u}+c \\[2ex]
&= 2 \sin(\sqrt{t}) + c \\[2ex]
&= 2 \sin(\sqrt{t}) + c \\[2ex]

Latest revision as of 23:27, 13 September 2022