6.1 Areas Between Curves/18: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary Tag: Manual revert |
||
(58 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
[[File:Desmos-graph.png|right|500px|]] | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
& y=8-x^2 | |||
& y=x^2 \\ | & \color{red}\mathbf{y=8-x^2} | ||
& \color{royalblue}\mathbf{y=x^2} \\ | |||
& x=-3 | & x=-3 | ||
& x=3 \\ | & x=3 \\ | ||
Line 10: | Line 13: | ||
[[ | <math>\int_{-3}^{3} \left|(8-x^2) - (x^2)\right|dx </math> | ||
<math> | |||
\begin{align} | |||
8-x^2 &= x^2 \\ | |||
-2x^2 &= -8 \\ | |||
x^2 &= 4 \\ | |||
x &= \pm2 | |||
\end{align} | |||
</math> | |||
<math>\int_{-3}^{3} \left|(8-x^2) - (x^2)\right|dx = \int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx + \int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx + \int_{2}^{3}\left((x^2)-(8-x^2)\right)dx = \frac{14}{3} + \frac{64}{3} + \frac{14}{3} = \frac{92}{3}</math> | |||
<math> | |||
\begin{align} | |||
\int_{-3}^{-2}\left((x^2)-(8-x^2)\right)dx &= \int_{-3}^{-2}\left(2x^2-8)\right)dx \\[2ex] | |||
&= \left[\frac{2x^3}{3}-8x\right]\Bigg|_{-3}^{-2} \\[2ex] | |||
&= \left[\frac{2(-2)^3}{3}-8(-2)\right]-\left[\frac{2(-3)^3}{3}-8(-3)\right] \\[2ex] | |||
&= \left[\frac{-16}{3}+16\right]-\left[\frac{-54}{3}+24\right] = \frac{38}{3}-8 \\[2ex] | |||
&= \frac{14}{3} | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
\int_{-2}^{2} \left((8-x^2) - (x^2)\right)dx &= \int_{-2}^{2}\left(8-2x^2\right)dx \\[2ex] | |||
&= \left[8x-\frac{2x^3}{3}\right]\Bigg|_{-2}^{2} \\[2ex] | |||
&= \left[8(2)-\frac{2(2)^3}{3}\right] - \left[8(-2)-\frac{2(-2)^3}{3}\right] \\[2ex] | |||
&= \left[16-\frac{16}{3}\right]-\left[-16+\frac{16}{3}\right] = 32-\frac{32}{3} \\[2ex] | |||
&= \frac{64}{3} | |||
\end{align} | |||
</math> |