5.5 The Substitution Rule/37: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
u &= \sin(x) \\[2ex]
u &= \sin(x) \\[2ex]
du &= \cos(x)\;dx \\[2ex]
du &= \cos(x)\;dx \\[2ex]
\frac{1}{3}du &= (a+bx^2)dx \\[2ex]


\end{align}
\end{align}
Line 18: Line 17:
\begin{align}
\begin{align}


\int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2)\;dx = \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2\;dx)\  \\[2ex]
\int \frac{\cos(x)}{\sin(x)}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2)\;dx = \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2\;dx)\  \\[2ex]





Revision as of 18:58, 20 September 2022