5.5 The Substitution Rule/37: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
&= \int \frac{1}{{u}}(du) | &= \int \frac{1}{{u}}(du) \\[2ex] | ||
<math>\text{Note: } \int \frac{1}{{x}}dx=\ln(x)+C</math> | |||
&= \frac{1}{3}\frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C \\[2ex] | &= \frac{1}{3}\frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C \\[2ex] | ||
&= \frac{2}{3}(3ax+bx^3)^{1/2} + C \\[2ex] | &= \frac{2}{3}(3ax+bx^3)^{1/2} + C \\[2ex] |
Revision as of 19:05, 20 September 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int \frac{\cos(x)}{\sin(x)}dx &= \int \frac{1}{\sin(x)}\cos(x)\;dx = \int \frac{1}{\sin(x)}(\cos(x)\;dx) \\[2ex] &= \int \frac{1}{{u}}(du) \\[2ex] <math>\text{Note: } \int \frac{1}{{x}}dx=\ln(x)+C}
&= \frac{1}{3}\frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C \\[2ex]
&= \frac{2}{3}(3ax+bx^3)^{1/2} + C \\[2ex]
&= \frac{2}{3}{\sqrt{3ax+bx^3}} + C
\end{align} </math>