5.5 The Substitution Rule/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(18 intermediate revisions by the same user not shown)
Line 8: Line 8:


u &= 3ax+bx^3 \\[2ex]
u &= 3ax+bx^3 \\[2ex]
du &= 3a+3bx^2dx \\[2ex]
du &= (3a+3bx^2)dx \\[2ex]
\frac{1}{3}du &= (a+bx^2)dx \\[2ex]


\end{align}
\end{align}
Line 17: Line 18:
\begin{align}
\begin{align}


\int \frac{\sin{(\ln{(x))}}}{x}dx &= \int\frac{1}{x}\sin(\ln{(x)})dx = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)})} \\[2ex]
\int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2)\;dx = \int \frac{1}{\sqrt{3ax+bx^3}}((a+bx^2)\;dx)\\[2ex]


&= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex]
 
&= -\cos{(u)} + C \\[2ex]
&= \frac{1}{3}\int \frac{1}{\sqrt{u}}(du) = \frac{1}{3}\int u^{-1/2} du \\[2ex]
&= -\cos{(\ln{(x)})} + C
&= \frac{1}{3}\frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C \\[2ex]
&= \frac{2}{3}(3ax+bx^3)^{1/2} + C \\[2ex]
&= \frac{2}{3}{\sqrt{3ax+bx^3}} + C


\end{align}
\end{align}
</math>
</math>

Latest revision as of 19:18, 20 September 2022