5.5 The Substitution Rule/37: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \int \cotx dx </math> <math> \begin{align} u &= 3ax+bx^3 \\[2ex] du &= (3a+3bx^2)dx \\[2ex] \frac{1}{3}du &= (a+bx^2)dx \\[2ex] \end{align} </math> <math> \begin{align} \int \frac{a+bx^2}{\sqrt{3ax+bx^3}}dx &= \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2)\;dx = \int \frac{1}{\sqrt{3ax+bx^3}}(a+bx^2\;dx)\ \\[2ex] &= \frac{1}{3}\int \frac{1}{\sqrt{u}}(du) = \frac{1}{3}\int u^{-1/2} du \\[2ex] &= \frac{1}{3}\frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C \\[2ex] &= \frac{...") |
No edit summary |
||
(27 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int \ | \int \cot(x)dx = \int \frac{\cos(x)}{\sin(x)}dx | ||
</math> | </math> | ||
Line 7: | Line 7: | ||
\begin{align} | \begin{align} | ||
u &= | u &= \sin(x) \\[2ex] | ||
du &= \cos(x)\;dx \\[2ex] | |||
\end{align} | \end{align} | ||
Line 18: | Line 17: | ||
\begin{align} | \begin{align} | ||
\int \frac{ | \int \frac{\cos(x)}{\sin(x)}dx &= \int \frac{1}{\sin(x)}\cos(x)\;dx = \int \frac{1}{\sin(x)}(\cos(x)\;dx) \\[2ex] | ||
&= | &= \int \frac{1}{{u}}(du) \\[2ex] | ||
&= \ | &= \left| \ln(u) \right| + C \\[2ex] | ||
&= \ | &= \left| \ln(\sin(x)) \right| + C \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 19:18, 20 September 2022