6.1 Areas Between Curves/14: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \begin{align} & y=\cos(x), y=2-\cos(x)\\ & \int_{0}^{2\pi} \left[2 - \cos(x) - \cos(x) \right]\mathrm{d}x = \int_{0}^{2\pi} \left[2 - 2\cos(x)\right]\mathrm{d}x\\ &= \left[ 2x-2\sin(x) \right]\bigg|_{0}^{2\pi}\\ &= \left(4\pi - 0 \right) - \left(0\right)\\ &= 4\pi \end{align} </math>") |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
[[File:Desmos-graph2.png|300px|left]] | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
& y=\cos(x), y=2-\cos(x)\\ | & \color{purple}\mathbf{y=\cos(x)}, \color{green}\mathbf{y=2-\cos(x)}\\ | ||
& \int_{0}^{2\pi} \left[2 - \cos(x) - \cos(x) \right]\mathrm{d}x = \int_{0}^{2\pi} \left[2 - 2\cos(x)\right]\mathrm{d}x\\ | & \int_{0}^{2\pi} \left[2 - \cos(x) - \cos(x) \right]\mathrm{d}x = \int_{0}^{2\pi} \left[2 - 2\cos(x)\right]\mathrm{d}x\\ | ||
&= \left[ 2x-2\sin(x) \right]\bigg|_{0}^{2\pi}\\ | &= \left[ 2x-2\sin(x) \right]\bigg|_{0}^{2\pi}\\ |