5.4 Indefinite Integrals and the Net Change Theorem/31: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:




\int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx=\int_{0}^{1}\left(x^{\frac{4}{3}}+x^{\frac{5}{4}}\right)dx
\int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx=\int_{0}^{1}\left(x^{\frac{4}{3}}+x^{\frac{5}{4}}\right)dx \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 20:11, 20 September 2022