5.4 Indefinite Integrals and the Net Change Theorem/27: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math>\int_{1}^{4}\sqrt{t}(1+t)dt</math> =<math>\int_{}^{}\sqrt{t}(1+t)dt</math> =<math>\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}</math> =<math>\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\bigg|_{1}^{4}</math> =<math>\frac{2(4)^{3/2}}{3}+\frac{2(4)^{5/2}}{5}-\frac{2(1)^{3/2}}{3}+\frac{2(1)^{5/2}}{5}</math> =<math>\frac{256}{15}</math>") |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\ | <math> | ||
\begin{align} | |||
\int_{1}^{4}\sqrt{t}(1+t)dt =\int_{1}^{4}\left(t^{\frac{1}{2}}+t^{\frac{3}{2}}\right)dt | |||
= | =\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5} | ||
= | =\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\bigg|_{1}^{4} | ||
= | =\frac{2(4)^{3/2}}{3}+\frac{2(4)^{5/2}}{5}-\frac{2(1)^{3/2}}{3}+\frac{2(1)^{5/2}}{5} | ||
= | =\frac{256}{15} | ||
\end{align} | |||
</math> |
Revision as of 15:07, 21 September 2022