5.4 Indefinite Integrals and the Net Change Theorem/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
&=\left(\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\right)|_{1}^{4} \\[2ex] | &=\left(\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\right)|_{1}^{4} \\[2ex] | ||
=\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\bigg|_{1}^{4} | &=\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\bigg|_{1}^{4} | ||
=\frac{2(4)^{3/2}}{3}+\frac{2(4)^{5/2}}{5}-\frac{2(1)^{3/2}}{3}+\frac{2(1)^{5/2}}{5} | &=\frac{2(4)^{3/2}}{3}+\frac{2(4)^{5/2}}{5}-\frac{2(1)^{3/2}}{3}+\frac{2(1)^{5/2}}{5} | ||
=\frac{256}{15} | &=\frac{256}{15} | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 15:09, 21 September 2022