5.4 Indefinite Integrals and the Net Change Theorem/27: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\int_{1}^{4}\sqrt{t}(1+t)dt &=\int_{1}^{4}\left(t^{\frac{1}{2}}+t^{\frac{3}{2}}\right)dt \\[2ex]
\int_{1}^{4}\sqrt{t}(1+t)dt &=\int_{1}^{4}\left(t^{\frac{1}{2}}+t^{\frac{3}{2}}\right)dt \\[2ex]


&=\left(\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\right)|_{1}^{4} \\[2ex]
&=\left(\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\right)\Bigg|_{1}^{4} \\[2ex]


&=\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\bigg|_{1}^{4}
&=\frac{2(t)^{3/2}}{3}+\frac{2(t)^{5/2}}{5}\bigg|_{1}^{4}

Revision as of 15:09, 21 September 2022