5.4 Indefinite Integrals and the Net Change Theorem/27: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
\int_{1}^{4}\sqrt{t}(1+t)dt &=\int_{1}^{4}\left(t^{\frac{1}{2}}+t^{\frac{3}{2}}\right)dt \\[2ex] | \int_{1}^{4}\sqrt{t}(1+t)dt &=\int_{1}^{4}\left(t^{\frac{1}{2}}+t^{\frac{3}{2}}\right)dt \\[2ex] | ||
&=\left(\frac{ | &=\left(\frac{2t^{\frac{3}{2}}}{3}+\frac{2t^{\frac{5}{2}}}{5}\right)\Bigg|_{1}^{4} \\[2ex] | ||
&=\left[\frac{2(4)^{3/2}}{3}+\frac{2(4)^{5/2}}{5}\right]-\left[\frac{2(1)^{3/2}}{3}+\frac{2(1)^{5/2}}{5}\right] \\[2ex] | &=\left[\frac{2(4)^{3/2}}{3}+\frac{2(4)^{5/2}}{5}\right]-\left[\frac{2(1)^{3/2}}{3}+\frac{2(1)^{5/2}}{5}\right] \\[2ex] |
Revision as of 15:13, 21 September 2022