5.4 Indefinite Integrals and the Net Change Theorem/33: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
\int_{1}^{4}\sqrt{\frac{5}{x}}dy &= \int_{1}^{4}\frac{\sqrt{5}}{\sqrt{x}}dx = 5^\frac{1}{2}\int_{1}^{4}x^{-\frac{1}{2}}dx\\[2ex]
\int_{1}^{4}\sqrt{\frac{5}{x}}dy &= \int_{1}^{4}\frac{\sqrt{5}}{\sqrt{x}}dx = 5^\frac{1}{2}\int_{1}^{4}x^{-\frac{1}{2}}dx\\[2ex]


&= 2\sqrt{5}x^{\frac{1}{2}}\bigg|_{1}^{4} = 2\sqrt{5}\sqrt{x}\bigg|_{1}^{4} = 2\sqrt{5x}\bigg|_{1}^{4} \\[2ex]
&= 2\sqrt{5}x^{\frac{1}{2}}\bigg|_{1}^{4} \\[2ex]


&= 2\sqrt{5\times4}-2\sqrt{5\times1} \\[2ex]
&= 2\sqrt{5}\sqrt{4}-2\sqrt{5}{\sqrt{1}} \\[2ex]
   
   
&= 2\sqrt{20}-2\sqrt{5} = 4\sqrt{5}-2\sqrt{5} = 2\sqrt{5}
&= 2\sqrt{20}-2\sqrt{5} = 4\sqrt{5}-2\sqrt{5} = 2\sqrt{5}
\end{align}
\end{align}
</math>
</math>

Revision as of 15:28, 21 September 2022