5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta  
\int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta  
&= \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta  
&= \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta  
= \int_{0}^{\frac{\pi}{4}}sec^2(\theta)} + 1 \\[2ex]


& =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
& =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
Line 15: Line 14:
\end{align}
\end{align}
</math>
</math>
= \int_{0}^{\frac{\pi}{4}}sec^2(\theta)} + 1 \\[2ex]

Revision as of 16:00, 21 September 2022

= \int_{0}^{\frac{\pi}{4}}sec^2(\theta)} + 1 \\[2ex]