5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/3" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
\begin{align} | \begin{align} | ||
\frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} | \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} &= {\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex] | ||
& ={\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex] | |||
& =\cos{x} - \sin^2{x}\cos{x} \\[2ex] | & =\cos{x} - \sin^2{x}\cos{x} \\[2ex] | ||
& =\cos{x} - (1-cos^2 | & =\cos{x} - (1-cos^2{x})\cos{x} \\[2ex] | ||
& = \cos^3{x} | & = \cos^3{x} |
Latest revision as of 19:38, 21 September 2022
Note: