5.4 Indefinite Integrals and the Net Change Theorem/29: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/29" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:


\int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy &= \int_{-2}^{-1}\left(4y^3+2y^{-3}\right)dy\\[2ex]
\int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy &= \int_{-2}^{-1}\left(4y^3+2y^{-3}\right)dy\\[2ex]
&= \left[y^4-y^-2\right]_{-2}^{-1} \\[2ex]
&= \left[y^{4}-y^{-2}\right]_{-2}^{-1} \\[2ex]
&= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex]
&= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex]
&= \frac{-63}{4}
&= -\frac{63}{4}


\end{align}
\end{align}
</math>
</math>

Latest revision as of 19:40, 21 September 2022