5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/39" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(71 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math>
<math>
\begin{align}


<math>\int_{1}^{64}\frac{1}{x^(1/2)}</math>
\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx &= \int_{1}^{64}\left(\frac{1}{x^{1/2}} + \frac{x^{1/3}}{x^{1/2}}\right)dx
= \int_{1}^{64}\left(x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}\right)dx = \int_{1}^{64}\left(x^{-\frac{1}{2}}+x^{-\frac{1}{6}}\right)dx \\[2ex]
 
&= \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}\right]_{1}^{64} = \left[2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}\right]_{1}^{64} \\[2ex]
 
&= \left[2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6}\right] - \left[(2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})\right] \\[2ex]
 
&= \left[2\cdot8 + \frac{6}{5}(2)^5\right] - \left[2+\frac{6}{5}\right] = \left[16+\frac{192}{5}\right] - \left[\frac{16}{5}\right] = \left[\frac{80}{5} + \frac{192}{5}\right] - \left[\frac{16}{5}\right]\\[2ex]
 
&= \frac{256}{5}
 
\end{align}
</math>

Latest revision as of 19:41, 21 September 2022