5.4 Indefinite Integrals and the Net Change Theorem/41: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/41" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>\begin{align}\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt&=\int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt\\[2ex]&=\tan^{-1}\bigg|_{0}^{\frac{1}{\sqrt{3}}}=\tan(\frac{1}{\sqrt{3}})^{-1}-[tan(0)^{-1}]\\[2ex]&=\frac{\pi}{6}-0=\frac{\pi}{6}
<math>
\end{align}</math>
\begin{align}
\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt &= \int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt \\[2ex]
 
&=\arctan{(t)}\bigg|_{0}^{\frac{1}{\sqrt{3}}} \\[2ex]
&=\arctan\left(\frac{1}{\sqrt{3}}\right)-\arctan(0) \\[2ex]
 
&=\frac{\pi}{6}-0 \\[2ex]
 
&=\frac{\pi}{6}
 
\end{align}
</math>

Latest revision as of 19:41, 21 September 2022