5.4 Indefinite Integrals and the Net Change Theorem/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/41" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
\int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt &= \int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt \\[2ex] | \int_{0}^\frac{1}\sqrt{3}\frac{t^2-1}{t^4-1} dt &= \int_{0}^\frac{1}\sqrt{3} \frac{(t^2-1)}{(t^2-1)(t^2+1)} dt=\int_{0}^\frac{1}\sqrt{3} \frac{1}{(t^2+1)}dt \\[2ex] | ||
&=\arctan{(t)}\bigg|_{0}^{\frac{1}{\sqrt{3}}} = \arctan(\frac{1}{\sqrt{3}})- | &=\arctan{(t)}\bigg|_{0}^{\frac{1}{\sqrt{3}}} \\[2ex] | ||
&=\arctan\left(\frac{1}{\sqrt{3}}\right)-\arctan(0) \\[2ex] | |||
&=\frac{\pi}{6}-0=\frac{\pi}{6} | &=\frac{\pi}{6}-0 \\[2ex] | ||
&=\frac{\pi}{6} | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 19:41, 21 September 2022