5.5 The Substitution Rule/61: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
=  <math>\frac{3}{2}\sqrt[3]{1+2x}\bigg|_{0}^{13}</math>
=  <math>\frac{3}{2}\sqrt[3]{1+2x}\bigg|_{0}^{13}</math>
=  <math>\frac{3}{2}\sqrt[3]{1+2x* 13}-\frac{3}{2}\sqrt[3]{1+2*0}</math>
=  <math>\frac{3}{2}\sqrt[3]{1+2x* 13}-\frac{3}{2}\sqrt[3]{1+2*0}</math>
=  <math>\ 3 </math>
=  <math>\ 3 </math> \\[2ex]
 
<math>
\int_{0}^{13}\frac{dx}{\sqrt[3]{(1+2x)^2}}\,dx
</math>
 
 
<math>
\begin{align}
 
u &= 1+2x \\[2ex]
du &= 2dx \\[2ex]
\frac{1}{2}du &= dx \\[2ex]
 
\end{align}
</math>
 
 
New upper limit: <math>\pi = 1+2(13) = 27</math><br>
New lower limit: <math>0 = 1+2(0) = 1</math>
 
<math>
\begin{align}
 
\int_{0}^{13}\frac{dx}{\sqrt[3]{(1+2x)^2}}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex]
&= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex]
&= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex]
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex]
&= 0
 
\end{align}
</math>

Revision as of 03:53, 22 September 2022

= = = = = = = = = \\[2ex]



New upper limit:
New lower limit: